Georg Weiglein

Jeorg. Weighing durlam ac uh

TeV4LHC Sign-in				
Name	Institute	E-Mail		
Ta Iaskvili	UC Riverside	iashvi li@fnal.gov		
Luis R Flores Castillo	U Pittsburgh	luis @ fnal.gov		
Bana Mellas	U Wisconsin	handla da a mar copa de		
Stephon Lammel	Fermilas	Cames (Cfmal.gov		
WALL FISHER	Princeton	Luticher e fact, our		
ANNA GOUSSIOU	Notre Dame	a oussion @ a und her her		
Arto KHARCHILAVA	Notre Dame	a stop fnal gor		
Suyong CHOZ	UE Riverside	Sulona @fue L. Sov		
KEDA TAFIROUT	U. of TORONTO	a stop final gov Sulvage final gov TAFIROUT PHYSICS, UTORONTO, CA		
A MUNIAR	1) of Pennsylvania	numar @ nep. upenn.		
CHRIS NEU	U. FOE PENNSYLVANIA	neuefnal.laov		
Zack Sullivan	Farmilab	Zack@freel.gov		
Shoji · Asai	U. of Totry	Shoii. Asai@ cern. Ch		
SUNIL SOMALWAR	RUTGERS	SOMALWAR @ PHYSICS. RUTGER		
Samvel Khalatian	FermiLAB	samue 1@ fnal.gov		
YURY SINKIN	IHER (Russia)	SINKIND FNOR. gov		
YURY SINKIN Dmitri Sidora	Permilab	dsidorov@ fnall, gov		
JARED YAMAOKA	Rutsers	Vamacka & Fred Gall		
Reisaburo Tanaka	Okayama U.	tanaka@fnal.gov		
STEVE WORM	RUTGERS	tanaka @ fnal.gov		
GREGARIO BERNARM	PARIS	megacio D Prolo 20V		
Jonghee You	Fermilab	Vosa fant 9-10		
scott Willenbrock	UIUC	you find gov will en g vive edo		
Daniel ELVIRA	Fermilab	daniel@fnal.gov		
KETTY ELLIS	FERMILAG	ellis a first . Pol		
FABIO MALTONI	CENTRO FERMI 120HA	maltonie fis uniromas. it		
BEN KILMINSTER	ONIO STATE U.	bit @ fnal.gov		
SUNGWON LEE,	Texas A&M Univ.	slee @ fnal. gov		
SUNGWON LEE Olevsip Atranenta	ISU	sleep final gov olensing a flat gar		
Yoshie Ishizawa	Univer of Tsukuba	yoshida tral so		
Alex Melnitchouk	Vof Mississippi	melnit@thal, gov		
Norik Khalatyan	KEK, Jepan	horiko fnakiano		
AMITABH LATTI	Rutgers	Joth Cphysics, Surgery, ec		
Edward Diew	U. Michigan	diehleumich redu		
Haibin Wang	Purdue Univ	haibinua physics, purd		
Gordy Kane	Univ of Michigan	grane @Unich.edu		
ANTONI MUNDR	V. of Pecinsylvania	munds a hop upensoder		
Jacob Bourjaily	University of Michigan	Thour Ja Unidsedu		
Sven Heineheter	CERNI	Sven. He new eyer ocernich		
Boris Tuchming	SACLAY (FRANCE)	tuchming a food gor		
Thomas & McElmurry	0106	mcelmurr duince du		
Firders DURU	Univ. of Jowa	Firder-dury & viouso adu		
UGUL AKGUN	Univ- of Iowa	Vgur-akgun & Viour. edu hays & fnal. gol		
Claris Hour	Dilo Charles da	hays @ fnal, god		
Nothan Goldschmidt	Univ- of Michigan	nig@ Fnal.gov		
John Womersley	Fermilab	womersley@fnal.gov		
JOHN CONWAY	UC DAVIS	conway@fnal gov		
	100	Control of the same		

ED BEXGER Heather Logan Howard HABER

ARGONNE Wisconsin U, C, Santa Cruz FERMII AR

Conway@ fnal gov BERGER@ANL.GOV logan@physics.wisc.edu haber@scipp.vcsc.edu

Suyong Choi (D0)

Z + single b-tag

• Z+b inclusive diagrams

 – gg→Zbb is considered as NLO corrections to gb→Zb in the scheme of Campbell et al. PRD 69 (2004) 074021

- Background to Higgs search in ZH mode at the Tevatron
- Benchmark analysis for gb→hb
- Probe of b-quark parton density
 - Hb
 - Single top
 - Charged Higgs
 - bb-bar → H

 DØ has a preliminary result of σ(Z+b)/σ(Z+j)

1st measurement of b dist in p!

Z+b-tag

- 42 events remain after btagging
- Background shown in the figure is the sum of
 - Instrumental background
 - light-jet mistag
- Composition is found by solving the set of equations

With 10x stats could measure as function of x

Basic assumptions: Higgs boson production at large tanß

- Large tanβ → enhanced bbf (f = h, H, A) coupling
 Cross section rises like tan²β
- A and (h or H) are produced simultaneously
- A, h (or H) to bb decay branching fractions are ~ 0.9
- Except for a region m_A~110 130 GeV depending on tanb and other MSSM pars.

6

bh vs bbh processes

Triple b-tag sample

- At least 3 jets; p_T and h cuts optimized for Higgs mass and # of required jets
- Look for excess in di-jet mass
- Background shape determined from double b-tagged data by applying fake tag function to non-b-tagged jets

L_{int} = 131 pb⁻¹ DØ Run II Preliminary Data Bkgd. m_b = 120 GeV 60 Fitting outside signal region 40 ± 1 s of peak) 20 B-jet E-scale and Dijet Resolution important 200 M_{ii} (GeV)

- HF production is dominant
- No additional tuning for HF fraction is required once its rate is fixed in double b-tag sample

Learned how to measure QCD Backgrounds for Higgs

bf/bbf (→bb): preliminary results

Sensitivity to tanb down to ~ 40 for m_A = 100 GeV is expected with 1.6 fb⁻¹ of data

and with the current assumptions and

performances

- Signal acceptance is ~ 0.2–1.5% depending on m_h and final state
- Systematics (22-28%) taken into account
 - JES, b-tagging, resolution, trigger ...
 - Decay width approximated by Gaussian

DZero Run II vs. CDF Run I

DZero Run II Limit; March 2004 Using 130 pb⁻¹

CDF Run I Limit; October 2000 Using 91 pb⁻¹

How can DZero Run II limit be worse?!

Case now closed

Effect of the PDF on Acceptance: Total (qq + gg)

PYTHIA Monte Carlo (M_A = 90; $tan\beta$ = 50)

			· /
		CTEQ3L(total)	CTEQ5L(total)
σ		27.04	18.31
${\rm Num~MC}$		_	_
L2	Events		
	Accept.(%)	0.81	0.79
	$\sigma * Accept$	0.22	0.15
Kinematics	Events		
	Accept.(%)	0.13	0.13
	$\sigma * Accept$	0.035	0.023
b-Tagging	Events		
	Accept.(%)	0.015	0.010
	$\sigma * Accept$	0.0041	0.0019
bJet K in	Events		
	Accept.(%)	0.011	0.0067
	$\sigma * Accept$	0.0030	0.0012

The total difference between the PDF's: Why PDF 0.0030/0.0013 = 2.5 effects so large?

Combined Results

- Combined DØ/CDF result
 - * Assumes luminosity from two experiments
- × 10% dijet mass resolution
- * Run IIB silicon
- Width of HSG bands determined by method uncertainty
 - No systematics included
- Width of SHWG bands given by analysis uncertainty
- x SHWG included H→WW

x contributes at high m.

Tevatron Higgs Sensitivity Group June 2003 Update

Low mass region 95% excl. or 3σ by 2008 This is difficult region at LHC

What could we do right now?

- Measurement of WZ/ZZ mass distribution
 - * A combination would be sensitive to this with ~250 pb⁻¹ per expt
 - X Standard candle for dijet mass resolution studies
 - x "Dry run" for a Higgs search (also a nice result in itself!)
- **x** Full measurements of systematic errors
 - *One of the largest complaints about the SHWG and HSG studies
 - * Timescale is good for understanding these issues
 - x Can be a huge factor in reducing luminosity requirements!
- X Studies of final variable techniques
 - X Learn from LEP (b-Tag, constrained fits, etc...)
 - **x** Give this many smart people enough time, a lot can be thought up

Di-photon mass spectra,

$\int Ldt \approx 190 \text{pb}^{-1}$ (\approx half of the currently available data)

Alex Melnitchouk

QCD: At least 1jet Mis-ID as γ main bkg

LHC: More material!

TeV can look at ID'd Conversions

Open Questions

Apart from a brief presentation of CDF results, the biggest questions might be:

- Does LO/NLO get the SM diphoton x-sec and p_T right?
- How accurately can we state that?
- Is that the only significant background to the Higgs search or will dijets be a big problem?
- The latter probably can't answered by us easily, but if we look into the existing LHC work, we could probably comment on it.
 - e.g.) If the fake rate seems reasonable, or Does CDF Monte Carlo predict the right fake rate?

Photon Fake Rate from Data (Plenary Talk)

- Rate of jets with leading meson (π⁰,η) which cannot be distinguished from prompt photons: Depends on
 - detector capabilities,
 e.g. granularity ofcalorimeter
 - cuts!
- Systematic error about 30-80% depending on Et
- Data higher than PYTHIA and HERWIG
- PYTHIA describes data better than HERWIG

CDF (preliminary result)

At TeV Jet → γ miss ID is obtained from γ+jet data. We should evaluate how does it work with LHC detectors

Diphoton Cross Sections

qt = diphoton systemPt

 $\Delta \phi$ between photons

- LO PYTHIA low by a factor ~2.0, but reasonable mass shape
- DIPHOX breaks down at low qt due to singularities in NLO
- RESBOS does better at low qt due to continuous ISR resumming
- DIPHOX shows additional source at low m($\gamma\gamma$), small $\Delta\phi$, and qt>30 GeV. These are (qg \rightarrow gq $\gamma \rightarrow$ gy γ) where the q fragmented to a photon

Understanding W+jets is key to SM TeV Higgs Search CDF Result (Background Estimation)

CDF Run II Preliminary (162 pb⁻¹)

Background	$W^{\pm}+2$ jets
Events before tagging	2072
$W^{\pm}+$ light flavors	14.1 ± 2.6
$oldsymbol{W}^{\pm} + bar{b}$	19.1 ± 5.8
$W^\pm + e ar c$	6.8 ± 2.2
$W^\pm + c$	6.5 ± 1.8
Diboson/ $Z^0 ightarrow au^+ au^-$	2.5 ± 0.6
non- W^\pm	8.5 ± 1.2
$tar{t}$	5.1 ± 1.0
single top	3.8 ± 0.5
Total Background	66.5 ± 9.0
Observed positive tags	62
$Br(H->bb)*\sigma(WH)$	< 5pb

- $Br(H->bb)*\sigma(WH) < 5pb$
- The measured numbers are consistent with estimated numbers.
- 62 tagged events in $W^{\perp}+2$ jets bin, including 8 double tagged events.
- Reconstruct dijet mass from the 62 tagged events. → Next page.

DØ Result (95% C.L. Upper Limit)

Besides, require the following selections:

TeV search complimentary

- 1. $25 < m_T(W^{\pm}) < 125 \text{ GeV}/c^2$,
- 2. Exactly two b-tagged jets to suppress top background,
 - \rightarrow 2 events (expect: 2.5 \pm 0.5).
- Set a 95% C.L. upper limit with mass window (85 < Dijet Mass < 135 GeV/ c^2).
 - \rightarrow 0 events (expect: $0.03 \pm 0.01 \ (W^{\pm}H), 0.54 \pm 0.14 \ (background)$).

Source	Uncertainty (%)
Jet Energy Scale	14
Jet ID	7
b-tagging	11
Trigger & ϵ ID	5
EM Scale	5
MC Simulations	15
Total	26

 $\sigma(W^\pm H) imes Br(H o bar b) < 12.4$ pb at 95% C.L. for $m_H=115$ GeV.

Low Mass SM Higgs Potential at LHC

H+2jets (VBF) at the LHC (cont)

Study additional (central) jet production to W + 2 forward and separated jets (tagging jets)

- Cross-section dependence on separation in pseudorapidity between tagging jets
- ❖Rate of third jet
- Angular correlations between tagging jets and central jet
- Comparison with QCD predictions
 - Test interplay between perturbative and parton shower approaches

Outlook

- Higgs associated with jets play a central role in searches for Low Mass Higgs at the LHC
 - ➤ Need to extract reliably QCD backgrounds
 - Will rely on LHC data to extract QCD backgrounds
 - Tevatron plays a central role in validating MC tools, which will be extensively used at the LHC
- W/Z associated with jets are produced copiously enough at the Tevatron to study topologies relevant to H+1j and H+2j searches at the LHC
 - Cross-sections for W/Z+1,2,4 jets are large enough to investigate relevant corners of the phase-space
- ♣Jet veto in pp→WW+X is central to Higgs searches
 with H→WW→IIvv at the LHC

Hadronic τ signature

Fakes measured from incl. jet triggers. Can do same at LHC?

Fit Results

Should also Combine with 3b/4b MSSM Higgs Search!

Should combine with D0!

Lesson from LEP: Combine early, Combine often (painful)

From pseudoexperiments

Starting point: WW cross section

Making steady progress on understanding diboson production

~200 pb ⁻¹	II: ee, eμ, μμ
WW	11.3 ±1.3
DY	1.82 ±0.4
WZ+ZZ	0.76 ±0.06
Wγ	1.05±0.19
Fakes	1.08±0.49
Bkg	4.77±0.70
WW+Bkg	16.1±1.6
Data	17

NLO (MFCM, Ellis& Campbell) σW=12.5±0.8 pb Would like to have MC@NLO with spin correlations

$$\sigma(p\bar{p} \to WW) = 14.3^{+5.6}_{-4.9}(stat) \pm 1.6(syst) \pm 0.9(lum) \ pb$$

JUNULUSIUNS

Learned we are also sensitive to fermiphobic type-II doublets See H. Logan's talk

Susana Cabrera

Ok, now what?

- CDF & D0 should continue to push hard on Higgs analysis. It is largely complimentary to LHC and best way to develop tools and validate MC
- TeV can find 3σ SM light Higgs just before LHC
- MSSM, non-SM Higgs still possible
- Have a few good, little projects already
- Need people to suggest/work on more for successful workshop